
TCCF: Tightly-Coupled Co-simulation Framework
for RISC-V Based Systems

Xavier Ruppen, Roberto Rigamonti, Alberto Dassatti
HES-SO — REDS Institute, HEIG-VD — CH-1400 Yverdon-les-Bains, Switzerland

e-mail: name.surname@heig-vd.ch

Abstract—The development of heterogeneous systems where a
CPU has to interact with a custom HDL design is particularly
critical; these systems must, in fact, rely on the cooperation of
sub-systems developed by (usually) separate teams and tested in
isolation, typically by developing a mock system to represent the
counterpart and running made-up test benches for some limited
scenarios. This approach often postpones the discovery of issues
to the system integration stage, where locating them is more
complex and fixing them more expensive.

In this paper we present TCCF, a QEMU/ModelSim-based
framework that allows the complete co-simulation of hetero-
geneous systems. Having full visibility on the internals during
HW/SW interactions enables to quickly spot incongruences and
mistakes in the interface design, as well as to perform in-depth
investigations on system’s failures and behavior.

We have validated TCCF on a variety of publicly-available IP
cores and platforms. The framework is easily extensible to cover
custom protocols and operating systems, and is available under
a GPL-3.0 license.

I. INTRODUCTION

The traditional workflow in heterogeneous system design
requires multiple teams, often with non-overlapping compe-
tences, to agree on a set of paper specifications, and then
to separately develop the different components. Testing is
typically performed by creating a mock system to represent the
missing parts and running made-up test benches and scenarios.
This approach not only postpones the discovery of system
integration bugs late in the development life cycle, where
the costs are much higher [1], but also requires each team
to develop accurate simulators, with the associated financial
burden (and set of bugs) [2].

In this paper we present TCCF (Tightly-Coupled Co-
simulation Framework), a QEMU/ModelSim-based framework
that allows the quick co-simulation of heterogeneous systems.
TCCF handles the interactions between ModelSim1 — via
its FLI interface [3] — and a modified version of RISC-
V/QEMU2, allowing unmodified host software to run in
QEMU and interact with an HDL design being simulated in
ModelSim. Having full visibility on the internals during real
interactions enables developers to quickly spot incongruences
and mistakes in the interface design due to ambiguities in the
specifications, enhancing at the same time the visibility on the
state of the system at the time of failure [2]. A comparable
visibility could only be achieved by simulating the whole

1https://www.mentor.com/products/fpga/verification-simulation/modelsim
2https://github.com/riscv/riscv-qemu

system as an HDL design; for instance, Arm validates its
processors by making them boot GNU/Linux [4]. However,
besides requiring the HDL sources for the complete system,
this approach is prohibitively time-consuming — the time
scale being in the order of days. Moreover, in the case of
FPGA design, being able to simulate the HDL design in
a realistic setting both avoids having to regenerate a new
bitstream after each bugfix and does not impose the overhead
due to hardware debugging tools, which could engender timing
violations and thus unpredictable behavior [2], [5].

II. RELATED WORK

The idea of co-simulating the hardware and the software
components of an heterogeneous system is not new, dating
to the early 90s [6]. However, so far it has been exploited
in very restricted settings, either requiring the development of
complex software abstractions or limiting the scope to specific
languages/systems/platforms.

The RABBITS project [7] proposes a system-level simula-
tion based on QEMU and SystemC. The approach and the
preliminary results are extremely interesting, the choice of
SystemC as a working language has a major impact upon the
applicability of the methodologies. Indeed, while SystemC is
still a promising technology, it is not yet supported in many
standard workflows.

Another related project is SimXMD [5], which focuses on
using GDB to drive the simulation of a processor. Despite
being similar to what we propose, this approach is limited by
the use of the GDB debugger and the close ties to the chosen
processor, making portability a real issue.

The technique presented in [8] is also very close to what
we propose, in that a set of interfaces is used to communicate
between the HW and the SW sub-systems across a custom
Remote Bus. Although more general than the approaches
detailed above, it requires the development of an HDL wrapper
and a custom translation program using their API for each
supported bus, imposing a considerable engineering effort.

Despite being investigated for almost thirty years, the co-
simulation problem is far from being solved, as testified by the
very recent work presented in [2]: it proposes a full-system co-
simulation framework for server systems with PCIe-connected
FPGAs by linking a Virtual Machine’s PCIe and NIC devices
to the corresponding blocks in an HDL design. While very
effective in providing reduced simulation times, it is limited

https://www.mentor.com/products/fpga/verification-simulation/modelsim
https://github.com/riscv/riscv-qemu


Fig. 1. Schematic representation of TCCF. Commands, data, and IRQ requests
are exchanged between QEMU and the UUT via the FLI interface.

to PCIe devices and specifically aimed at server environments,
while we target more generic platforms and configurations.

To the best of our knowledge, no approach available in
literature is as easily re-targetable as TCCF, and therefore
none can be adapted with very small changes to the RISC-
V ecosystem. In particular, TCCF demands that neither the
OS code nor the HDL design have to be altered, as just a set
of easily-implemented wrappers between the two domains has
to be created. As a consequence, adding the support for a
new design in TCCF can take as little as 15 minutes of
work. Furthermore, when a standard bus such as AXI [9] or
Wishbone [10] is used, these wrappers are common to different
designs and thus no adaptation is required.

III. PROPOSED APPROACH AND RESULTS

TCCF is structured in three main parts, as depicted by
Fig. 1:

• QEMU/RISC-V: this component executes the OS, with
the Unit Under Test (UUT) driver if available, and
interacts with the HDL simulation through a network
socket. In particular, it sends both commands and data to
the UUT, and receives responses and interrupt requests.
From the OS stance, the UUT appears as a (simulated)
memory-mapped device. Operations directed to particular
memory regions are intercepted and redirected to the
socket connected to the FLI interface.

• FLI interface: it is a simple bridge that interfaces the
sockets used by QEMU to the FLI socket exposed by
ModelSim.

• ModelSim and its FLI socket: it interacts with a wrapper
to the HDL design interfacing the UUT with the frame-
work. The wrapper is very easy to write — it simply
connects signals from the FLI socket to the bus used by
the design, and thus could be easily automated. Although
a Bus Functional Model (BFM) is required, BFMs for
the major buses can be freely obtained from the UVVM
Library3 and imported as is.

Due to limitations in FLI, the hardware simulation cannot be
controlled by QEMU — meaning that the UUT has to be
started and stopped from ModelSim’s interface or a script [3].

We have performed tests with several systems and HDL
designs to validate our proposal and explore its limits. We have
started from a simple VHDL UUT composed by four registers

3https://github.com/UVVM/UVVM All

connected using an AXI-lite slave [9] and a RISC-V64U
machine emulated in QEMU/RISC-V. In particular, we have
taken the latest Linux kernel available for the SiFive Freedom
U500 board — compiled with the SiFive GNU Embedded
Toolchain — and the BusyBear Linux4 root filesystem image
targeting the VirtIO board in QEMU/RISC-V. After booting
the virtual board, using the AXI-lite UVVM’s BFM and
a simple wrapper connecting AXI operations with the FLI
interface, we have been able to read/write from the registers
via the devmem2 command.

We have then taken a freely-available Verilog UART 16550
core5 that uses the Wishbone bus. UVVM does not have the
BFM for the Wishbone bus, but it has the BFM for the Avalon
bus [11] which differs from it in just few minor points. We
were thus able to write a wrapper in few minutes, taking care
to instantiate twice the UART port so as to be able to use
them to make two separate QEMU instances communicate.
In GNU/Linux we have then mapped the UART port to a
chosen memory address where QEMU is able to intercept the
read/write operations6. As a result, we were able to gain full-
observability on a bi-directional serial communication between
two systems via the simulated HDL design.

IV. CONCLUSION

In this paper we presented a framework for the quick co-
simulation of heterogeneous systems. The clear advantage with
respect to competing approaches available in literature is the
versatility and the reduced effort required to adapt to custom
platforms. Besides its applications in testing and debug, TCCF
could be used in an educational setting to introduce students
to an architecture and its interactions with a set of simulated
peripherals7.

REFERENCES

[1] J.M. Stecklein et al., “Error Cost Escalation Through the Project Life
Cycle,” in INCOSE Symposium, 2004.

[2] S. Cho et al., “A Full-System VM-HDL Co-Simulation Framework for
Servers with PCIe-Connected FPGAs,” in FPGA Conference, 2018.

[3] Mentor Graphics, ModelSim Command Reference Manual. Mentor
Graphics Corp., 2015.

[4] M.S. Hrishikesh, M. Rajagopalan, S. Sriram, R. Mantri, “System Vali-
dation at ARM,” Arm Holdings, Tech. Rep., 2011.

[5] R. Willenberg, P. Chow, “Simulation-Based HW/SW Co-Debugging for
Field-Programmable Systems-on-Chip,” in FPL Conference, 2013.

[6] R.K. Gupta, C.N. Coelho, G. De Micheli, “Synthesis and Simulation of
Digital Systems Containing Interacting Hardware and Software Compo-
nents,” in DAC Conference, 1992.

[7] TIMA Lab - Grenoble Institute of Technology. (2010) RABBITS :
an environment for fast and accurate MPSoC simulation. [Online].
Available: http://tima.imag.fr/sls/research-projects/rabbits/

[8] P. Crosthwaite, J. Williams, P. Sutton, “A Unified Emulation/Simulation
Environment for Reconfigurable System-on-Chip Development,” in FPT
Conference, 2011.

[9] Arm, AMBA AXI and ACE Protocol Specification. Arm Holdings, 2011.
[10] OpenCores, Wishbone B4: WISHBONE System-On-Chip (SoC) Intercon-

nection Architecture for Portable IP Cores. OpenCores, 2010.
[11] Intel Corp., Avalon Interface Specification. Intel Corp., 2017.

4https://github.com/michaeljclark/busybear-linux
5https://opencores.org/project,uart16550
6This can be easily done in the device tree for systems supporting it.
7Please refer to our previous work with a custom educational board,

available at https://github.com/reds-heig/FSS

https://github.com/UVVM/UVVM_All
http://tima.imag.fr/sls/research-projects/rabbits/
https://github.com/michaeljclark/busybear-linux
https://opencores.org/project,uart16550
https://github.com/reds-heig/FSS

	Introduction
	Related Work
	Proposed Approach and Results
	Conclusion
	References

