
1

Learning-based parasite segmentation in the context
of the MOVABLE project

Roberto Rigamonti and Magali Fröhlich and Yann Thoma
REDS institute, HEIG-VD — School of Business and Engineering Vaud

CH-1400 Yverdon-les-Bains, Switzerland
name.surname@heig-vd.ch

Abstract—This document details the learning process adopted
to segment parasites from the Plasmodium family in the context
of the MOVABLE project1, which is aimed at computing the
parasitemia from optical microscope images of blood samples in
the presence of a suspected malaria infection.

I. INTRODUCTION

Malaria is a disease where parasites from the Plasmodium
family attack the erythrocytes of the vertebrate host and
propagate until the host dies, usually because of complications
occurred due to organ failure. The transmission between hosts
is performed by mosquitoes, and indeed the use of bed-nets
is a very effective strategy to hinder the spreading of the
disease. Nonetheless, the World Health Organization (WHO)
estimates that more than 400’000 people die each year because
of malaria, and reported infections are above 200 millions [11].
These numbers were significantly higher before a joint effort
of the developed countries boosted the quality of education,
prevention, and therapies.

The current major concern relates to the abuse of antibiotics,
mostly related to ineffective detection techniques adopted in
third world’s countries. For instance, only 12-20% of all
malaria cases in Tanzania are confirmed parasitologically [5].
Beside the economic impact that unneeded expensive treat-
ments have on the small budgets that low-income countries
devote to health care, this phenomenon favours parasite resis-
tance, alarmingly weakening the weapons we have to counter
the disease.

In this document we analyze in detail a learning-based
approach to segment parasites from the Plasmodium family
in blood samples. While learning-based systems tradition-
ally require more computational resources than their image
processing-based counterparts, they are better suited to a
context where imaging conditions undergo extreme variations.
Nonetheless, the two approaches must not be considered as
competing but as complementary: image processing is indeed
a powerful tool to accomplish some of the tasks required for
computing the parasitemia value — for instance, segmenting
red blood cells —, and can be used to incorporate in the
learning process prior knowledge that would otherwise be
impossible for the learning algorithm to acquire from data [8].

The solution we explore is grounded on the technique
presented in [2], [3], [9] and called KernelBoost. In the

1MicrOscopic VisuAlization of BLood cElls for the Detection of Malaria
and CD4+, http://reds.heig-vd.ch/rad/projets/movable

following sections we will examine how this technique works
and detail the characteristics of the built system.

II. SEGMENTING PARASITES WITH KERNELBOOST

In this section we will illustrate the inner workings of the
KernelBoost algorithm, showing how it has been adapted to
our purposes. Precision will be sacrificed for the sake of
clarity; for a mathematically-sound overview of the proposed
approach, please refer to [2], [3].

A. Gradient Boosting

The core component of the system presented in [2], [3],
[9] is an algorithm called Gradient Boosting [10], which
can be seen as a generalization of the well-known AdaBoost
algorithm where weak-learners are real-valued and different
loss functions can be used. In essence, what Gradient Boosting
does is the following:

1) The algorithm starts by taking a set of binary-classified
samples and assigning to each sample the same weight.

2) On a randomly-sampled subset of these samples —
where the weight of each sample influenced the sam-
pling process — a simple classifier (called weak
learner) is learned. The classifier has to be simple to
trade accuracy for speed. As there are two classes only,
random guessing would have given us roughly 50%
accuracy, so we expect the classifier to be a bit better
than this (but not much).

3) We include the classifier in the set of classifiers learned
so far, giving it a weight proportional to its accuracy on
a validation set that has been kept apart.

4) We evaluate how the overall set of weak learners per-
forms on the data by adding the weighted predictions of
each weak learner in the set. The weight of each sample
is kept into account too, as the algorithm is trying to
minimize the overall misclassification penalty.

5) If we are satisfied with the result, or if the number of
weak learners in the set has reached a predefined limit,
then stop.

6) Otherwise, samples are reweighted according to a spe-
cific rule (in AdaBoost it is an exponential), giving more
weight to samples that have been misclassified and less
weight to the correctly classified ones. The rationale is
that we want the algorithm to focus on the mistakes it
has made. The algorithm then jumps back to step (2).



2

This technique has proven to be resistant to overfitting, and
has been applied in several disparate tasks [3].

B. Learning in KernelBoost

KernelBoost differs from a typical boosting algorithm in
that the features (that is, the characteristics) on which the
weak learners are learned are not hand-crafted — for instance,
gradients, SIFT features, . . . — but are extracted by a set of
kernels that are learned on the data itself and are applied
in a convolutional way on the input images. While hand-
crafted features have their advantages — notably, they are
mathematically sound, they incorporate prior knowledge on
the domain, and they are typically fast to compute —, devising
the best feature type for a given dataset is very difficult and
biased towards what we assume the learning algorithm prefers
as input.

Insights from the neurosciences [1] showed that living
beings are not pre-wired with a set of feature extractors,
but learn them directly from the data they acquire. However,
learning both the features and the classifier on the same dataset
increases the risk of overfitting, therefore care has to be taken
while manipulating sample sets.

In particular, KernelBoost operates on three sets while
learning each weak learner:
• Given a set of samples A, one third of the set is used to

learn a set of N candidate kernels.
• The kernels are then used to learn a regression tree on

a disjoint sample set (taking another third of the overall
set of samples), which will discard all but M kernels
(typically, for a regression tree of depth 4, only 15-25
kernels are retained while N could be in the order of
thousands).

• Finally, the whole set of samples (thus including 1/3 of
the set that has never been seen before) is used for scoring
the performance of the learned classifier and attributing
it a weight using line search.

The algorithm used to learn each individual kernel takes as
input a set of few thousands samples from the two considered
classes, and uses Regularized Least Squares to compute the
hyperplane that best splits the two sets. In particular, given
a set of S samples (where S is 1/3 of the overall number
of samples), R positive and R negative samples are extracted
from the images to create a subset P . To discriminate among
positive and negative samples, the label of the central pixel
of the sample is assumed to be the label of the sample and
all its subsamples. As shown in Fig. 1, a random center point
inside the sample area and a random size are chosen. Then, all
corresponding subsamples in P are taken and used to compute
the kernel by Regularized Least Squares minimization.

The original dataset, from which the samples are taken, can
be artificially balanced by activating a flag in the program’s
configuration. This prevents a label class to overcome by more
than 20% the number of samples of the other class, thus
avoiding an initial bias in the class label given to the samples.

The most basic implementation of the algorithm uses, as
input data, a grayscale version of the input images, and learns
a fixed number of kernels on them for each weak learner.

Fig. 1. Sampling mechanism for kernel learning: Samples of the specified size
are extracted from the image set, then a random center point is chosen inside
the sample and a subsample of random size is considered. The corresponding
subsample is taken from all the samples in the sample set, and kernels are
learned on this collection of subsamples. The label of each subsample is the
label inherited from the sample it was taken from, which corresponds to the
label of the center of the sample.

However, multiple different channels are possible: indeed, one
can learn a separate set of kernels on each individual channel,
and then let the regression tree learning algorithm pick which
kernels work best. We have considered 8 input channels that
can be easily computed starting from the original RGB input
images:
• grayscale version of the input image;
• green component of the input image;
• red component of the input image;
• grayscale version of the input image filtered with a

median filter;
• grayscale version of the input image filtered with a

Laplacian filter;
• grayscale version of the input image filtered with a

Gaussian filter;
• Sobel derivative in the X-direction of the grayscale ver-

sion of the input image;
• Sobel derivative in the Y-direction of the grayscale ver-

sion of the input image.
Additional channels, incorporating for instance some prior
knowledge or extracted using image processing techniques,
can be easily added to the system, monotonically increasing
the performances. Tab. I shows the repartition of the kernels
over the channels in a test run (where each Boosted Classifier
was composed by up to 500 weak learners).

The dataset we consider is constituted by images collected
at the CHUV medical center in Lausanne, Switzerland. The
images contain mainly parasites in their ring-shaped phase,
but other stages of the parasite’s life might appear. As the
clinically-relevant stage is the ring one, we created the ground-
truth images so as to mark with different colours the back-
ground, the parasites in the ring stage, and the parasites in
the other stages of development, as shown in Fig. 2. Indeed,
trying to solve the problem of finding the ring-shaped parasites



3

TABLE I
KERNEL REPARTITION OVER THE CHANNELS IN A TEST RUN WHERE EACH BOOSTED CLASSIFIER WAS COMPOSED BY UP TO 500 WEAK LEARNERS

Classifier Grayscale Green Red Median Laplacian Gaussian Sobel-X Sobel-Y BC(0-127) BC(0-255) BC(127-255)

BC(0-127) 20.19% 11.52% 21.60% 12.39% 6.18% 13.59% 7.08% 7.44% - - -
BC(0-255) 19.04% 11.13% 18.84% 13.06% 7.39% 14.95% 8.29% 7.30% - - -
BC(127-255) 19.74% 11.98% 26.66% 12.49% 3.10% 13.06% 5.86% 7.10% - - -
BC(FINAL) 14.03% 7.29% 8.44% 7.25% 6.03% 7.29% 6.44% 6.09% 10.38% 14.03% 12.73%

Fig. 4. UML diagram of the developed system. In the code the kernels are
dubbed filters given their structure and that they are applied in a convolutional
way to images.

directly proved to be very difficult. However, introducing a
third class poses a problem too, as KernelBoost is capable
of dealing with binary problems only. To allow for the three
different ground-truth values, the problem is split over three
parallel learning problems where each deals with a separate
value pair. The three classifiers are then applied on the initial
images, giving their predictions that are then used in a final
KernelBoost classifier solving the initial binary problem. This
technique of reusing the results of previous stages is known
in literature as Auto-Context [12].

The full architecture of the system is depicted by Fig. 3,
while the corresponding UML diagram is shown in Fig. 4.

C. Computing the segmented image

Once the KernelBoost classifier produces its prediction,
we still have to post-process the image to obtain a binary
classification than can then be fed to the GUI for being
revised by the technician and that can be used to estimate
the parasitemia.

We have, at first, implemented a strategy for automatically
devising the threshold used to binarize the classifier’s predic-
tion from the data by finding the threshold that maximized
the Precision-Recall measure. This approach led to images
which were too noisy to be used as final segmentation re-
sults. We have, however, realized that the desired threshold
is stable across multiple images and could be safely hand-
determined. We have therefore adopted this approach, leaving
the automatic adaptation of this value — possibly based on
ROC curves — as future work.

Once the image has been binarized, the obtained regions
could still present small holes and spurious pixels affecting
image quality. We have thus removed all regions whose area
was below a fixed threshold and performed a morphological
close operation that filled small gaps. Then we computed the
convex hull of each blob and filled it. Finally, we added to the
image the binary inverse of the flood-fill operation, to ensure
that even big holes inside detections are filled.

D. Automatic incorporation of user’s feedback

Boosting is known to exhibit a certain degree of robustness
against errors in the training data. However, having high
quality data is crucial to reduce misclassification error. Once
an image is segmented and presented to the technician via
the GUI, he can manually fix the segmentation errors and
return back the image, along with the fixed ground-truth,
as feedback for retraining the system. This feedback is very
valuable, so we heavily weight samples that belongs to it.
These feedback images are distinguished from initial ones by a
marking prepended to the image file name in the configuration
files. This initial reweighting makes the samples from those
images more likely to be considered and makes mistakes on
them more serious, reducing the impact of the errors in the
initial training data.

III. CONCLUSION AND FUTURE WORK

In this document we have presented a bird’s-eye view of the
principles upon which the learning system used in MOVABLE
has been developed.

The system is agnostic with respect to the object to detect,
requiring only minor tuning in the sample and kernel size,
and can therefore be used for tasks different than segmenting



4

Fig. 2. Example image from the dataset, along with the corresponding ground-truth. In the ground-truth the ring-shaped parasites are marked in white, while
the parasites in other stages of their life are marked in gray.

Plasmodium parasites — for instance, it can be used to
segment CD4+ cells (indeed, it has been shown to be very
successfully in segmenting Jurkat cells in [9]).

For further information on the algorithm, please refer to [2],
[3], [9].

The system has several aspects that can be further improved:
• The algorithm might incorporate the image processing-

based solution proposed by [4]; as mentioned in the
introduction, this presents several important advantages,
namely a fast and precise erythrocyte segmentation and
an initial parasite detection, both of which can be fed to
the system as additional channels significantly improving
the quality of the final segmentation.

• The image segmentation technique currently adopted is
called “pixel-wise segmentation”, as it gives a label to
each individual pixel ignoring the labels of the neigh-
boring pixels. The size of the kernels and the kernel
learning technique partially reduce this restriction, but
still the number of computations is extremely large: a
weak learner, for a reasonable parametrization, has indeed
on average around 20 kernels, and if we consider 300
weak learners (on average) for each boosted classifier
and three ground truth classes, we need to perform
4 × 300 × 20 = 24′000 convolutions with the input
channels, and then individually classify each of the pixels
based on these 24’000 features. Given that parasites are
chemically stained and must be located inside a red
blood cell, the vast majority of this effort is wasted.
Indeed, erythrocytes cover at most 50% of the image
area, and only few of them present marks that has to be
inspected to asses whether they correspond to parasite or
not. Restricting the algorithm to operate on these regions,
for example by using a cascaded classifier in the spirit
of the one proposed by Viola-Jones [6], could boost the
performance — as finer-resolution images and more weak
learners could be used — while at the same time reducing
the computational time by several orders of magnitude.

• Additional input channels should be explored.
• The threshold used to binarize the result proved to be

sufficiently stable across the dataset we have explored, but
having an adaptive thredshold could increase the quality

of the results presented to the user.
• The 2D kernels could be decomposed in 1D kernels

by using the technique explored in [7], considerably
reducing the cost of the convolutions required to extract
the features.

REFERENCES

[1] B.A. Olshausen and D.J. Fields. Emergence of simple-cell receptive
field properties by learning a sparse code for natural images. Nature,
1996.

[2] C.J. Becker and R. Rigamonti and V. Lepetit and P. Fua. KernelBoost:
Supervised Learning of Image Features For Classification. In MICCAI,
2013.

[3] C.J. Becker and R. Rigamonti and V. Lepetit and P. Fua. KernelBoost:
Supervised Learning of Image Features For Classification. Technical
Report 183586, EPFL, 2013.

[4] G. Burri. Parasitémie automatisée de la malaria à partir d’images
microscopiques. Master’s thesis, Haute École Spécialisée de Suisse
Occidentale, 2016.

[5] J. Kahama-Maro and V. D’Acremont and G.D. Mtasiwa and C. Lengeler.
Low quality of routine microscopy for malaria at different levels of the
health system in Dar es Salaam. Malaria Journal, 2011.

[6] P. Viola and M. Jones. Robust Real-time Object Detection. International
Journal of Computer Vision, 2001.

[7] R. Rigamonti and A. Sironi and V. Lepetit and P. Fua. Learning
Separable Filters. In CVPR, 2013.

[8] R. Rigamonti and V. Lepetit. Accurate and Efficient Linear Structure
Segmentation by Leveraging Ad Hoc Features with Learned Filters. In
MICCAI, 2012.

[9] R. Rigamonti and V. Lepetit and P. Fua. Beyond KernelBoost. Technical
Report 200378, EPFL, 2014.

[10] T. Hastie and R. Tibshirani and J. Friedman. The Elements of Statistical
Learning. Springer New York Inc., 2001.

[11] World Health Organization. World Malaria Report. Technical report,
2015.

[12] Z. Tu and X. Bai. Auto-context and its application to high-level vision
tasks and 3D brain image segmentation. IEEE TPAMI, 2010.



5

Fig. 3. Architecture of the learning system. The input image is used to compute the different channels that will be used during the learning process; These
channels are then fed to the three separate KernelBoost classifiers (one for each ground-truth pair) that output a prediction of the input image. These predictions
are finally used as supplemental channels to train a final KernelBoost predictor on the desired ground-truth pair.


